521 research outputs found

    Low-Temperature Physics

    Get PDF
    Contains reports on five research projects

    Seismic constraints from a Mars impact experiment using InSight and Perseverance

    Get PDF
    NASAā€™s InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission has operated a sophisticated suite of seismology and geophysics instruments on the surface of Mars since its arrival in 2018. On 18 February 2021, we attempted to detect the seismic and acoustic waves produced by the entry, descent and landing of the Perseverance rover using the sensors onboard the InSight lander. Similar observations have been made on Earth using data from both crewed1,2 and uncrewed3,4 spacecraft, and on the Moon during the Apollo era5, but never before on Mars or another planet. This was the only seismic event to occur on Mars since InSight began operations that had an a priori known and independently constrained timing and location. It therefore had the potential to be used as a calibration for other marsquakes recorded by InSight. Here we report that no signal from Perseveranceā€™s entry, descent and landing is identifiable in the InSight data. Nonetheless, measurements made during the landing window enable us to place constraints on the distanceā€“amplitude relationships used to predict the amplitude of seismic waves produced by planetary impacts and place in situ constraints on Martian impact seismic efficiency (the fraction of the impactor kinetic energy converted into seismic energy)

    The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications

    Get PDF
    We present a power-spectrum analysis of the final 2dF Galaxy Redshift Survey (2dFGRS), employing a direct Fourier method. The sample used comprises 221 414 galaxies with measured redshifts. We investigate in detail the modelling of the sample selection, improving on previous treatments in a number of respects. A new angular mask is derived, based on revisions to the photometric calibration. The redshift selection function is determined by dividing the survey according to rest-frame colour, and deducing a self-consistent treatment of k-corrections and evolution for each population. The covariance matrix for the power-spectrum estimates is determined using two different approaches to the construction of mock surveys, which are used to demonstrate that the input cosmological model can be correctly recovered. We discuss in detail the possible differences between the galaxy and mass power spectra, and treat these using simulations, analytic models and a hybrid empirical approach. Based on these investigations, we are confident that the 2dFGRS power spectrum can be used to infer the matter content of the universe. On large scales, our estimated power spectrum shows evidence for the ā€˜baryon oscillations' that are predicted in cold dark matter (CDM) models. Fitting to a CDM model, assuming a primordial ns= 1 spectrum, h= 0.72 and negligible neutrino mass, the preferred parameters are Ī©mh= 0.168 Ā± 0.016 and a baryon fraction Ī©b/Ī©m= 0.185 Ā± 0.046 (1Ļƒ errors). The value of Ī©mh is 1Ļƒ lower than the 0.20 Ā± 0.03 in our 2001 analysis of the partially complete 2dFGRS. This shift is largely due to the signal from the newly sampled regions of space, rather than the refinements in the treatment of observational selection. This analysis therefore implies a density significantly below the standard Ī©m= 0.3: in combination with cosmic microwave background (CMB) data from the Wilkinson Microwave Anisotropy Probe (WMAP), we infer Ī©m= 0.231 Ā± 0.02

    Substructure analysis of selected low-richness 2dFGRS clusters of galaxies

    Get PDF
    Complementary one-, two- and three-dimensional tests for detecting the presence of substructure in clusters of galaxies are applied to recently obtained data from the 2dF Galaxy Redshift Survey. The sample of 25 clusters used in this study includes 16 clusters not previously investigated for substructure. Substructure is detected at or greater than the 99 per cent confidence level in at least one test for 21 of the 25 clusters studied here. From the results, it appears that low-richness clusters commonly contain subclusters participating in mergers. About half of the clusters have two or more components within 0.5 hāˆ’1 Mpc of the cluster centroid, and at least three clusters (Abell 1139, Abell 1663 and Abell S333) exhibit velocity-position characteristics consistent with the presence of possible cluster rotation, shear, or infall dynamics. The geometry of certain features is consistent with influence by the host supercluster environments. In general, our results support the hypothesis that low-richness clusters relax to structureless equilibrium states on very long dynamical time-scales (if at all

    The 2dF Galaxy Redshift Survey: the blue galaxy fraction and implications for the Butcherā€”Oemler effect

    Get PDF
    We derive the fraction of blue galaxies in a sample of clusters at z < 0.11 and the general field at the same redshift. The value of the blue fraction is observed to depend on the luminosity limit adopted, cluster-centric radius and, more generally, local galaxy density, but it does not depend on cluster properties. Changes in the blue fraction are due to variations in the relative proportions of red and blue galaxies but the star formation rate for these two galaxy groups remains unchanged. Our results are most consistent with a model where the star formation rate declines rapidly and the blue galaxies tend to be dwarfs and do not favour mechanisms where the Butcher-Oemler effect is caused by processes specific to the cluster environmen

    Phylogenomic analysis uncovers a 9-year variation of Uganda influenza type-A strains from the WHO-recommended vaccines and other Africa strains

    Get PDF
    Genetic characterisation of circulating influenza viruses directs annual vaccine strain selection and mitigation of infection spread. We used next-generation sequencing to locally generate whole genomes from 116 A(H1N1)pdm09 and 118 A(H3N2) positive patient swabs collected across Uganda between 2010 and 2018. We recovered sequences from 92% (215/234) of the swabs, 90% (193/215) of which were whole genomes. The newly-generated sequences were genetically and phylogenetically compared to the WHO-recommended vaccines and other Africa strains sampled since 1994. Uganda strain hemagglutinin (n = 206), neuraminidase (n = 207), and matrix protein (MP, n = 213) sequences had 95.23ā€“99.65%, 95.31ā€“99.79%, and 95.46ā€“100% amino acid similarity to the 2010ā€“2020 season vaccines, respectively, with several mutated hemagglutinin antigenic, receptor binding, and N-linked glycosylation sites. Uganda influenza type-A virus strains sequenced before 2016 clustered uniquely while later strains mixed with other Africa and global strains. We are the first to report novel A(H1N1)pdm09 subclades 6B.1A.3, 6B.1A.5(a,b), and 6B.1A.6 (Ā± T120A) that circulated in Eastern, Western, and Southern Africa in 2017ā€“2019. Africa forms part of the global influenza ecology with high viral genetic diversity, progressive antigenic drift, and local transmissions. For a continent with inadequate health resources and where social distancing is unsustainable, vaccination is the best option. Hence, African stakeholders should prioritise routine genome sequencing and analysis to direct vaccine selection and virus control

    Comprehensive reanalysis of transcription factor knockout expression data in Saccharomyces cerevisiae reveals many new targets

    Get PDF
    Transcription factor (TF) perturbation experiments give valuable insights into gene regulation. Genome-scale evidence from microarray measurements may be used to identify regulatory interactions between TFs and targets. Recently, Hu and colleagues published a comprehensive study covering 269 TF knockout mutants for the yeast Saccharomyces cerevisiae. However, the information that can be extracted from this valuable dataset is limited by the method employed to process the microarray data. Here, we present a reanalysis of the original data using improved statistical techniques freely available from the BioConductor project. We identify over 100 000 differentially expressed genesā€”nine times the total reported by Hu et al. We validate the biological significance of these genes by assessing their functions, the occurrence of upstream TF-binding sites, and the prevalence of proteinā€“protein interactions. The reanalysed dataset outperforms the original across all measures, indicating that we have uncovered a vastly expanded list of relevant targets. In summary, this work presents a high-quality reanalysis that maximizes the information contained in the Hu et al. compendium. The dataset is available from ArrayExpress (accession: E-MTAB-109) and it will be invaluable to any scientist interested in the yeast transcriptional regulatory system

    Galaxy ecology: groups and low-density environments in the SDSS and 2dFGRS

    Get PDF
    We analyse the observed correlation between galaxy environment and HĪ± emission-line strength, using volume-limited samples and group catalogues of 24 968 galaxies at 0.05 < z < 0.095, drawn from the 2dF Galaxy Redshift Survey ( < āˆ’19.5) and the Sloan Digital Sky Survey (Mr < āˆ’20.6). We characterize the environment by: (1) Ī£5, the surface number density of galaxies determined by the projected distance to the fifth nearest neighbour; and (2) Ļ1.1 and Ļ5.5, three-dimensional density estimates obtained by convolving the galaxy distribution with Gaussian kernels of dispersion 1.1 and 5.5 Mpc, respectively. We find that star-forming and quiescent galaxies form two distinct populations, as characterized by their HĪ± equivalent width, W0(HĪ±). The relative numbers of star-forming and quiescent galaxies vary strongly and continuously with local density. However, the distribution of W0(HĪ±) amongst the star-forming population is independent of environment. The fraction of star-forming galaxies shows strong sensitivity to the density on large scales, Ļ5.5, which is likely independent of the trend with local density, Ļ1.1. We use two differently selected group catalogues to demonstrate that the correlation with galaxy density is approximately independent of group velocity dispersion, for Ļƒ= 200-1000 km s-1. Even in the lowest-density environments, no more than āˆ¼70 per cent of galaxies show significant HĪ± emission. Based on these results, we conclude that the present-day correlation between star formation rate and environment is a result of short-time-scale mechanisms that take place preferentially at high redshift, such as starbursts induced by galaxy-galaxy interaction
    • ā€¦
    corecore